0 Fe b 20 01 THE RIEMANNIAN GEOMETRY OF ORBIT SPACES . THE METRIC , GEODESICS , AND INTEGRABLE SYSTEMS

نویسندگان

  • Peter W. Michor
  • P. W. MICHOR
چکیده

We investigate the rudiments of Riemannian geometry on orbit spaces M/G for isometric proper actions of Lie groups on Riemannian manifolds. Minimal geodesic arcs are length minimising curves in the metric space M/G and they can hit strata which are more singular only at the end points. This is phrased as convexity result. The geodesic spray, viewed as a (strata-preserving) vector field on TM/G, leads to the notion of geodesics in M/G which are projections under M → M/G of geodesics which are normal to the orbits. It also leads to ‘ballistic curves’ which are projections of the other geodesics. In examples (Hermitian and symmetric matrices, and more generally polar representations) we compute their equations by singular symplectic reductions and obtain generalizations of Calogero-Moser systems with spin. Table of contents

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic Geodesics in Carnot Groups

Graded nilpotent Lie groups, or Carnot Groups are to subRiemannian geometry as Euclidean spaces are to Riemannian geometry. They are the metric tangent cones for this geometry. Hoping that the analogy between subRiemannian and Riemannian geometry is a strong one, one might conjecture that the subRiemannian geodesic flow on any Carnot group is completely integrable. We prove this conjecture is f...

متن کامل

Examples of integrable sub-Riemannian geodesic flows

We exhibit examples of sub-Riemannian metrics with integrable geodesic flows and positive topological entropy. Introduction Consider a distribution on a manifold M, i.e. subbundle of the tangent bundle Π ⊂ TM . Non-holonomic Riemannian metric is a Riemannian metric g ∈ SΠ on this bundle. We call the pair (Π, g) sub-Riemannian structure. A curve γ : [0, 1] → M is called horizontal if γ̇ is a sect...

متن کامل

A Non-integrable Subriemannian Geodesic Flow on a Carnot Group

AND Abstract. Graded nilpotent Lie groups, or Carnot Groups are to subRiemannian geometry as Euclidean spaces are to Riemannian geometry. They are the metric tangent cones for this geometry. Hoping that the analogy between subRiemannian and Riemannian geometry is a strong one, one might conjecture that the subRiemannian geo-desic ow on any Carnot group is completely integrable. We prove this co...

متن کامل

Totally null surfaces in neutral Kähler 4-manifolds

We study the totally null surfaces of the neutral Kähler metric on certain 4-manifolds. The tangent spaces of totally null surfaces are either self-dual (α-planes) or anti-self-dual (β-planes) and so we consider α-surfaces and β-surfaces. The metric of the examples we study, which include the spaces of oriented geodesics of 3-manifolds of constant curvature, are anti-self-dual, and so it is wel...

متن کامل

Quadratically Integrable Geodesic Ows on the Torus and on the Klein Bottle

1. If the geodesic ow of a metric G on the torus T 2 is quadrati-cally integrable then the torus T 2 isometrically covers a torus with a Liouville metric on it. 2. The set of quadratically integrable geodesic ows on the Klein bottle is described. x1. Introduction Let M 2 be a smooth close surface with a Riemannian metric G on it. The metric allows to canonically identify the tangent and the co-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003